The Euler Projects are a series of problems meant to be solved prgrammatically. After I had completed a few of these problems, I decided I wanted to be able to access and run them from a single Interface, so I adjusted my approach and began writing them.
I have written my projects in C#, and in such a way that they can be accessed via a single UI
UI
The layout is as follows.
namespace UX
{
public partial class frmEulerProjects : Form
{
public frmEulerProjects()
{
InitializeComponent();
#if !DEBUG
lblTestInput.Visible = false;
txtTestInput.Visible = false;
#endif
}
private void frmEulerProjects_Load(object sender, EventArgs e)
{
PopulateProjectsList();
lstProjects.SelectedIndex = 0;
lblTitle.Text = lstProjects.SelectedItem.ToString();
lblOutput.Text = string.Empty;
}
private void lstProjects_SelectedIndexChanged(object sender, EventArgs e)
{
lblTitle.Text = lstProjects.SelectedItem.ToString();
lblOutput.Text = string.Empty;
}
private void lbtnSelection10_Clicked(object sender, EventArgs e)
{
lstProjects.SelectedIndex = 9;
lstProjects_SelectedIndexChanged(sender, e);
}
private void lbtnRunProject_Clicked(object sender, EventArgs e)
{
try
{
var project = getEulerProjectSelected();
lblOutput.Text = "Solving...";
#if DEBUG
if (txtTestInput.Text != string.Empty)
{
lblOutput.Text = project.RunSolution(txtTestInput.Text);
}
else { lblOutput.Text = project.RunSolution(); }
#else
lblOutput.Text = project.RunSolution();
#endif
}
catch(Exception exception)
{
MessageBox.Show(exception.Message, "Something Went Wrong");
}
}
private void lbtnCopyToClipboard_Clicked(object sender, EventArgs e)
{
if (lblOutput.Text != string.Empty)
{
Clipboard.SetText(lblOutput.Text);
MessageBox.Show(lblOutput.Text + " has been copied to the clipboard", "Text Copied");
}
if (lblOutput.Text == string.Empty)
{
MessageBox.Show("Run the project before trying to copy the answer", "Nothing to copy");
}
}
private void lblLastProjectCompleted_Click(object sender, EventArgs e)
{
lstProjects.SelectedIndex = lstProjects.Items.Count - 1;
}
}
}
Projects 1 - 10
Multiples of 3 and 5
Multiples of 3 and 5
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
namespace EulerProjects
{
public class Project1_3and5 : iEulerProjects
{
public string RunSolution()
{
var sumOfValues = 0;
for (var count = 0; count < 1000; count++)
{
if (count % 3 == 0)
{
sumOfValues += count;
continue;
}
if (count % 5 == 0)
{
sumOfValues += count;
}
}
return sumOfValues.ToString();
}
}
}
Even Fibonacci numbers
Even Fibonacci numbers
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
namespace EulerProjects
{
public class EvenFibonacciValues : iEulerProjects
{
public string RunSolution()
{
var summedValues = 2;
var fibonacchiOne = 1;
var fibonacchiTwo = 2;
var nextFibonacciValue = 0;
do
{
nextFibonacciValue = fibonacchiOne + fibonacchiTwo;
if (fibonacchiOne > fibonacchiTwo)
{
fibonacchiTwo = nextFibonacciValue;
summedValues += addEvenValues(nextFibonacciValue);
continue;
}
fibonacchiOne = nextFibonacciValue;
summedValues += addEvenValues(nextFibonacciValue);
} while (nextFibonacciValue <= 4000000);
return summedValues.ToString();
}
private int addEvenValues(int nextFibonacciValue)
{
var returnValue = 0;
if (nextFibonacciValue % 2 == 0)
{
returnValue = nextFibonacciValue;
}
return returnValue;
}
}
}
Largest prime factor
Largest prime factor
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
namespace EulerProjects
{
public class LargestPrimeFactor : iEulerProjects
{
int _LargestPrimeFactor = 2;
long _NumberCheckingAgainst = 600851475143;
List<int> _PrimeNumbers = new List<int>();
public LargestPrimeFactor()
{
_PrimeNumbers.Add(2);
}
public LargestPrimeFactor(long numberCheckingAgainst) : this()
{
_NumberCheckingAgainst = numberCheckingAgainst;
}
public string RunSolution()
{
do
{
if (!CheckIfExistingPrimesFactor())
{
FindNextPrimeFactor();
}
} while (_NumberCheckingAgainst != 1);
return _LargestPrimeFactor.ToString();
}
private bool CheckIfExistingPrimesFactor()
{
foreach (int prime in _PrimeNumbers)
{
if (prime % _NumberCheckingAgainst == 0)
{
ResetNumberCheckingAgainst(prime);
return true;
}
}
return false;
}
private void FindNextPrimeFactor()
{
for (int count = _LargestPrimeFactor + 1; count <= _NumberCheckingAgainst; count++)
{
if (!CheckIfNextNumberIsPrime(count))
{
continue;
}
if (_NumberCheckingAgainst % count == 0)
{
ResetNumberCheckingAgainst(count);
_LargestPrimeFactor = (count);
return;
}
if (count == _NumberCheckingAgainst)
{
ResetNumberCheckingAgainst(count);
}
}
}
private bool CheckIfNextNumberIsPrime(int primeCantidate)
{
foreach (int prime in _PrimeNumbers)
{
if (primeCantidate % prime == 0)
{
return false;
}
}
_PrimeNumbers.Add(primeCantidate);
return true;
}
private void ResetNumberCheckingAgainst(int divisor)
{
_NumberCheckingAgainst = _NumberCheckingAgainst / divisor;
}
}
}
Largest palindrome product
Largest palindrome product
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers.
namespace EulerProjects
{
public class LargestPalindromeProduct : iEulerProjects
{
public string RunSolution()
{
return CheckNumbers().ToString();
}
private int CheckNumbers()
{
int largestPalindrome = 0;
for (int count1 = 999; count1 > 900; count1--)
{
for (int count2 = 999; count2 > 900; count2--)
{
var product = count1 * count2;
if (product <= largestPalindrome)
{
continue;
}
if (!CheckIfPalindrome(product.ToString()))
{
continue;
}
largestPalindrome = product;
}
}
return largestPalindrome;
}
private bool CheckIfPalindrome(string product)
{
for (int count1 = 0, count2 = product.Length - 1; count1 < count2; count1++, count2--)
{
if (product[count1] != product[count2])
{
return false;
}
}
return true;
}
}
}
Smallest multiple
Smallest multiple
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
namespace EulerProjects
{
public class SmallestMultiple : iEulerProjects
{
public string RunSolution()
{
List<int> shortestListOfDivisors = ReduceList();
var solution = FindMinMultiple(shortestListOfDivisors);
return solution.ToString();
}
private long FindMinMultiple(List<int> shortestListOfDivisors)
{
var usedDivisors = new List<int>();
var maxMultiple = FindMaxMultiple(shortestListOfDivisors);
var multiplier = 20;
for (var increment = 20; increment < maxMultiple; increment += multiplier)
{
for (var divisor = 0; divisor < shortestListOfDivisors.Count; divisor++)
{
if (usedDivisors.Contains(shortestListOfDivisors[divisor]))
{
continue;
}
if (increment % shortestListOfDivisors[divisor] == 0)
{
if (!usedDivisors.Contains(shortestListOfDivisors[divisor]))
{
usedDivisors.Add(shortestListOfDivisors[divisor]);
multiplier = increment > multiplier ? increment : multiplier;
}
if (usedDivisors.Count == shortestListOfDivisors.Count)
{
return increment;
}
}
}
}
return maxMultiple;
}
private long FindMaxMultiple(List<int> listOfDivisors)
{
long multiple = listOfDivisors[0];
for (var count = 1; count < listOfDivisors.Count; count++)
{
multiple = multiple * listOfDivisors[count];
}
return multiple;
}
private List<int> ReduceList()
{
var reducedList = PopulateList();
var changed = true;
do
{
changed = FindLargestDivisors(reducedList);
} while (changed);
return reducedList;
}
private bool FindLargestDivisors(List<int> reducedList)
{
foreach (int divisor in reducedList)
{
for (var count = reducedList[reducedList.Count() -1]; count < 20; count++)
{
if (divisor == count)
{
continue;
}
if (divisor % count == 0)
{
if (!reducedList.Contains(count))
{
continue;
}
reducedList.Remove(count);
return true;
}
}
}
return false;
}
private List<int> PopulateList()
{
var newList = new List<int>();
for (var count = 20; count > 0; count--)
{
newList.Add(count);
}
return newList;
}
}
}
Sum Square Difference
Sum Square Difference
The sum of the squares of the first ten natural numbers is,
12 + 22 + ... + 102 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is.
3025 - 385 = 2640
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
namespace EulerProjects
{
public class SumSquareDifference : iEulerProjects
{
public string RunSolution()
{
var summedSquares = SumSquaredValues();
var squaredSum = SquareSummedValues();
var difference = FindDifference(summedSquares, squaredSum);
return difference.ToString();
}
private long FindDifference(long summedSquares, long squaredSum)
{
if (summedSquares < squaredSum)
{
return squaredSum - summedSquares;
}
return summedSquares - squaredSum;
}
private long SumSquaredValues(int maxValueToSquare = 100)
{
long summedSquares = 0;
var power = 2;
for (var count = 1; count <= maxValueToSquare; count++)
{
summedSquares += Convert.ToInt64(Math.Pow(count, power));
}
return summedSquares;
}
private long SquareSummedValues(int maxValueToSum = 100)
{
long squaredSum = 0;
var power = 2;
for (var count = 1; count <= maxValueToSum; count++)
{
squaredSum += count;
}
squaredSum = Convert.ToInt64(Math.Pow(squaredSum, power));
return squaredSum;
}
public string RunSolution(string TestInput)
{
throw new NotImplementedException();
}
}
}
10001st prime
10001st prime
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10 001st prime number?
namespace EulerProjects
{
public class TenThousandFirstPrime : iEulerProjects
{
public string RunSolution()
{
var maxQuantityOfPrimes = 10001;
var PrimeNumbers = new List<long>();
PrimeNumbers.Add(2);
var primeCantidate = PrimeNumbers[PrimeNumbers.Count - 1] + 1;
do
{
var isPrime = true;
foreach (long prime in PrimeNumbers)
{
if (prime > Math.Sqrt(primeCantidate))
{
break;
}
if (primeCantidate % prime == 0)
{
primeCantidate++;
isPrime = false;
break;
}
}
if (isPrime)
{
PrimeNumbers.Add(primeCantidate);
primeCantidate++;
}
} while (PrimeNumbers.Count < maxQuantityOfPrimes);
return PrimeNumbers[maxQuantityOfPrimes - 1].ToString();
}
}
}
Largest product in a series
Largest product in a series
The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
namespace EulerProjects
{
public class LargestProductInASeries : iEulerProjects
{
public string RunSolution()
{
var providedNumbers = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
var solution = FindSolution(providedNumbers);
return solution.ToString();
}
private long FindSolution(string providedNumbers)
{
long largestProduct = 0;
for (var stringPosition = 0; stringPosition < providedNumbers.Length - 13; stringPosition++)
{
List<int> cantidateList = FindCantidates(stringPosition, providedNumbers);
long productOfCantidates = FindProduct(cantidateList);
if (largestProduct < productOfCantidates)
{
largestProduct = productOfCantidates;
}
}
return largestProduct;
}
private List<int> FindCantidates(int stringPosition, string providedNumbers)
{
var cantidateList = new List<int>();
char testString = providedNumbers[0];
for (var count = 0; count < 13; count++)
{
cantidateList.Add(Convert.ToInt32(char.GetNumericValue(providedNumbers[stringPosition + count])));
}
return cantidateList;
}
private long FindProduct(List<int> cantidateList)
{
long ProductOfCantidates = 1;
foreach (int cantidate in cantidateList)
{
ProductOfCantidates = ProductOfCantidates * cantidate;
}
return ProductOfCantidates;
}
}
}
Special Pythagorean Triplet
Special Pythagorean Triplet
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
a2 + b2 = c2
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
namespace EulerProjects
{
public class SpecialPythagoreanTriplet : iEulerProjects
{
public string RunSolution()
{
return EvaluateCantidates().ToString();
}
private long EvaluateCantidates()
{
long lowestProductOfCantidates = int.MaxValue;
for (var cantidate1 = 1; cantidate1 < 1000; cantidate1++)
{
for (var cantidate2 = 1; cantidate2 < 1000; cantidate2++)
{
var cantidate3 = FindPithagreanThird(cantidate1, cantidate2);
var summedCantidates = cantidate1 + cantidate2 + cantidate3;
if (summedCantidates < 1000)
{
continue;
}
if (summedCantidates > 1000)
{
break;
}
long productOfCantidates = findProductOfCantidates(cantidate1, cantidate2, cantidate3);
lowestProductOfCantidates = productOfCantidates < lowestProductOfCantidates ? productOfCantidates : lowestProductOfCantidates;
}
}
return lowestProductOfCantidates;
}
private long findProductOfCantidates(int cantidate1, int cantidate2, double cantidate3)
{
return Convert.ToInt64(cantidate1 * cantidate2 * cantidate3);
}
private double FindPithagreanThird(int cantidate1, int cantidate2)
{
return Math.Sqrt(Math.Pow(cantidate1, 2) + Math.Pow(cantidate2, 2));
}
}
}
Summation of primes
Summation of primes
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
namespace EulerProjects
{
public class SummationOfPrimes : iEulerProjects
{
public string RunSolution()
{
var maxPrime = 2000000; //two million
var primesBelowTwoMillion = FindPrimes(maxPrime);
long summedPrimes = findSum(primesBelowTwoMillion);
return summedPrimes.ToString();
}
private long findSum(List<int> primesBelowTwoMillion)
{
long summedPrimes = 0;
foreach (int prime in primesBelowTwoMillion)
{
summedPrimes += prime;
}
return summedPrimes;
}
private List<int> FindPrimes(int maxPrime)
{
var primeList = addLowestPrime();
for (var primeCantidate = 5; primeCantidate <= maxPrime; primeCantidate += 2)
{
if (!isPrime(primeCantidate, primeList))
{
continue;
}
primeList.Add(primeCantidate);
}
return primeList;
}
private bool isPrime(int cantidate, List<int> primeList)
{
for (var prime = 1; prime < primeList.Count; prime++)
{
if (primeList[prime] > Math.Sqrt(cantidate))
{
return true;
}
if (cantidate % primeList[prime] == 0)
{
return false;
}
}
return true;
}
private List<int> addLowestPrime()
{
var lowestPrime = new List<int>();
lowestPrime.Add(2);
lowestPrime.Add(3);
return lowestPrime;
}
}
}
Projects 11 - 20
Largest product in a grid
Largest product in a grid
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
namespace EulerProjects
{
public class LargestProductInAGrid : iEulerProjects
{
private const int _TableMaxRowOrColumn = 20;
private int[,] NumberGrid;
private long GreatestProduct = 0;
public LargestProductInAGrid()
{
NumberGrid = new int[20, 20] {
{08, 02, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 08},
{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 04, 56, 62, 00},
{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 03, 49, 13, 36, 65},
{52, 70, 95, 23, 04, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91},
{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80},
{24, 47, 32, 60, 99, 03, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50},
{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70},
{67, 26, 20, 68, 02, 62, 12, 20, 95, 63, 94, 39, 63, 08, 40, 91, 66, 49, 94, 21},
{24, 55, 58, 05, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72},
{21, 36, 23, 09, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95},
{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 03, 80, 04, 62, 16, 14, 09, 53, 56, 92},
{16, 39, 05, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57},
{86, 56, 00, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58},
{19, 80, 81, 68, 05, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40},
{04, 52, 08, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66},
{88, 36, 68, 87, 57, 62, 20, 72, 03, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69},
{04, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 08, 46, 29, 32, 40, 62, 76, 36},
{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 04, 36, 16},
{20, 73, 35, 29, 78, 31, 90, 01, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54},
{01, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 01, 89, 19, 67, 48} };
}
public string RunSolution()
{
CheckIfAHorizontalProductIsGreater();
CheckIfAVertialProductIsGreater();
CheckIfAPositiveSlopeProductIsGreater();
CheckIfANegativeSlopeProductIsGreater();
return GreatestProduct.ToString();
}
private void CheckIfANegativeSlopeProductIsGreater()
{
for (var row = 3; row < _TableMaxRowOrColumn; row++)
{
for (var collumn = 3; collumn < _TableMaxRowOrColumn; collumn++)
{
var product = NumberGrid[row, collumn] * NumberGrid[row - 1, collumn - 1] * NumberGrid[row - 2, collumn - 2] * NumberGrid[row - 3, collumn - 3];
GreatestProduct = product > GreatestProduct ? product : GreatestProduct;
}
}
}
private void CheckIfAPositiveSlopeProductIsGreater()
{
for (var row = 3; row < _TableMaxRowOrColumn; row++)
{
for (var collumn = 0; collumn < _TableMaxRowOrColumn - 4; collumn++)
{
var product = NumberGrid[row, collumn] * NumberGrid[row - 1, collumn + 1] * NumberGrid[row - 2, collumn + 2] * NumberGrid[row - 3, collumn + 3];
GreatestProduct = product > GreatestProduct ? product : GreatestProduct;
}
}
}
private void CheckIfAVertialProductIsGreater()
{
for (var collumn = 0; collumn < _TableMaxRowOrColumn; collumn++)
{
for (var row = 0; row < _TableMaxRowOrColumn - 4; row++)
{
var product = NumberGrid[row, collumn] * NumberGrid[row + 1, collumn] * NumberGrid[row + 2, collumn] * NumberGrid[row + 3, collumn];
GreatestProduct = product > GreatestProduct ? product : GreatestProduct;
}
}
}
private void CheckIfAHorizontalProductIsGreater()
{
for (var row = 0; row < _TableMaxRowOrColumn; row++)
{
for (var collumn = 0; collumn < _TableMaxRowOrColumn - 4; collumn++)
{
var product = NumberGrid[row, collumn] * NumberGrid[row, collumn + 1] * NumberGrid[row, collumn + 2] * NumberGrid[row, collumn + 3];
GreatestProduct = product > GreatestProduct ? product : GreatestProduct;
}
}
}
}
}
Highly divisible triangular number
Highly divisible triangular number
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
namespace EulerProjects
{
public class HighlyDivisibleTriangularNumber : iEulerProjects
{
public string RunSolution()
{
return CalculateTriangleNumbers().ToString();
}
public string RunSolution(string TestInput)
{
throw new NotImplementedException();
}
private long CalculateTriangleNumbers()
{
long currentTriangleNumber = 0;
for (long count = 1; count < long.MaxValue; count++)
{
currentTriangleNumber += count;
if (FindDivisorsOf(currentTriangleNumber).Count >= 500)
{
return currentTriangleNumber;
}
}
return 0;
}
private List<long> FindDivisorsOf(long testValue)
{
var divisors = new List<long>();
for (long count = 1; count <= Math.Sqrt(testValue); count++)
{
if (testValue % count == 0)
{
divisors.Add(count);
divisors.Add(testValue / count);
}
}
return divisors;
}
}
}
Large sum
Large sum
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690
namespace EulerProjects
{
public class LargeSum : iEulerProjects
{
public string RunSolution()
{
var numberList = PopulateNumberList();
var listSum = FindSummedValue(numberList);
return FindFirstTenDigits(listSum);
}
private String FindFirstTenDigits(string listSum)
{
var firstTenDigits = listSum.Where(ls => ls != '.').Take(10);
return ConcatinateCharacterArray(firstTenDigits);
}
private string ConcatinateCharacterArray(IEnumerable<char> firstTenDigits)
{
var returnString = string.Empty;
foreach (char digit in firstTenDigits)
{
returnString += digit;
}
return returnString;
}
private string FindSummedValue(List<string> numberList)
{
double summedList = 0;
foreach (string number in numberList)
{
summedList += Convert.ToDouble(number);
}
return summedList.ToString();
}
private List<string> PopulateNumberList()
{
var numberList = new List<string>();
numberList.Add("37107287533902102798797998220837590246510135740250");
numberList.Add("46376937677490009712648124896970078050417018260538");
numberList.Add("74324986199524741059474233309513058123726617309629");
numberList.Add("91942213363574161572522430563301811072406154908250");
numberList.Add("23067588207539346171171980310421047513778063246676");
numberList.Add("89261670696623633820136378418383684178734361726757");
numberList.Add("28112879812849979408065481931592621691275889832738");
numberList.Add("44274228917432520321923589422876796487670272189318");
numberList.Add("47451445736001306439091167216856844588711603153276");
numberList.Add("70386486105843025439939619828917593665686757934951");
numberList.Add("62176457141856560629502157223196586755079324193331");
numberList.Add("64906352462741904929101432445813822663347944758178");
numberList.Add("92575867718337217661963751590579239728245598838407");
numberList.Add("58203565325359399008402633568948830189458628227828");
numberList.Add("80181199384826282014278194139940567587151170094390");
numberList.Add("35398664372827112653829987240784473053190104293586");
numberList.Add("86515506006295864861532075273371959191420517255829");
numberList.Add("71693888707715466499115593487603532921714970056938");
numberList.Add("54370070576826684624621495650076471787294438377604");
numberList.Add("53282654108756828443191190634694037855217779295145");
numberList.Add("36123272525000296071075082563815656710885258350721");
numberList.Add("45876576172410976447339110607218265236877223636045");
numberList.Add("17423706905851860660448207621209813287860733969412");
numberList.Add("81142660418086830619328460811191061556940512689692");
numberList.Add("51934325451728388641918047049293215058642563049483");
numberList.Add("62467221648435076201727918039944693004732956340691");
numberList.Add("15732444386908125794514089057706229429197107928209");
numberList.Add("55037687525678773091862540744969844508330393682126");
numberList.Add("18336384825330154686196124348767681297534375946515");
numberList.Add("80386287592878490201521685554828717201219257766954");
numberList.Add("78182833757993103614740356856449095527097864797581");
numberList.Add("16726320100436897842553539920931837441497806860984");
numberList.Add("48403098129077791799088218795327364475675590848030");
numberList.Add("87086987551392711854517078544161852424320693150332");
numberList.Add("59959406895756536782107074926966537676326235447210");
numberList.Add("69793950679652694742597709739166693763042633987085");
numberList.Add("41052684708299085211399427365734116182760315001271");
numberList.Add("65378607361501080857009149939512557028198746004375");
numberList.Add("35829035317434717326932123578154982629742552737307");
numberList.Add("94953759765105305946966067683156574377167401875275");
numberList.Add("88902802571733229619176668713819931811048770190271");
numberList.Add("25267680276078003013678680992525463401061632866526");
numberList.Add("36270218540497705585629946580636237993140746255962");
numberList.Add("24074486908231174977792365466257246923322810917141");
numberList.Add("91430288197103288597806669760892938638285025333403");
numberList.Add("34413065578016127815921815005561868836468420090470");
numberList.Add("23053081172816430487623791969842487255036638784583");
numberList.Add("11487696932154902810424020138335124462181441773470");
numberList.Add("63783299490636259666498587618221225225512486764533");
numberList.Add("67720186971698544312419572409913959008952310058822");
numberList.Add("95548255300263520781532296796249481641953868218774");
numberList.Add("76085327132285723110424803456124867697064507995236");
numberList.Add("37774242535411291684276865538926205024910326572967");
numberList.Add("23701913275725675285653248258265463092207058596522");
numberList.Add("29798860272258331913126375147341994889534765745501");
numberList.Add("18495701454879288984856827726077713721403798879715");
numberList.Add("38298203783031473527721580348144513491373226651381");
numberList.Add("34829543829199918180278916522431027392251122869539");
numberList.Add("40957953066405232632538044100059654939159879593635");
numberList.Add("29746152185502371307642255121183693803580388584903");
numberList.Add("41698116222072977186158236678424689157993532961922");
numberList.Add("62467957194401269043877107275048102390895523597457");
numberList.Add("23189706772547915061505504953922979530901129967519");
numberList.Add("86188088225875314529584099251203829009407770775672");
numberList.Add("11306739708304724483816533873502340845647058077308");
numberList.Add("82959174767140363198008187129011875491310547126581");
numberList.Add("97623331044818386269515456334926366572897563400500");
numberList.Add("42846280183517070527831839425882145521227251250327");
numberList.Add("55121603546981200581762165212827652751691296897789");
numberList.Add("32238195734329339946437501907836945765883352399886");
numberList.Add("75506164965184775180738168837861091527357929701337");
numberList.Add("62177842752192623401942399639168044983993173312731");
numberList.Add("32924185707147349566916674687634660915035914677504");
numberList.Add("99518671430235219628894890102423325116913619626622");
numberList.Add("73267460800591547471830798392868535206946944540724");
numberList.Add("76841822524674417161514036427982273348055556214818");
numberList.Add("97142617910342598647204516893989422179826088076852");
numberList.Add("87783646182799346313767754307809363333018982642090");
numberList.Add("10848802521674670883215120185883543223812876952786");
numberList.Add("71329612474782464538636993009049310363619763878039");
numberList.Add("62184073572399794223406235393808339651327408011116");
numberList.Add("66627891981488087797941876876144230030984490851411");
numberList.Add("60661826293682836764744779239180335110989069790714");
numberList.Add("85786944089552990653640447425576083659976645795096");
numberList.Add("66024396409905389607120198219976047599490197230297");
numberList.Add("64913982680032973156037120041377903785566085089252");
numberList.Add("16730939319872750275468906903707539413042652315011");
numberList.Add("94809377245048795150954100921645863754710598436791");
numberList.Add("78639167021187492431995700641917969777599028300699");
numberList.Add("15368713711936614952811305876380278410754449733078");
numberList.Add("40789923115535562561142322423255033685442488917353");
numberList.Add("44889911501440648020369068063960672322193204149535");
numberList.Add("41503128880339536053299340368006977710650566631954");
numberList.Add("81234880673210146739058568557934581403627822703280");
numberList.Add("82616570773948327592232845941706525094512325230608");
numberList.Add("22918802058777319719839450180888072429661980811197");
numberList.Add("77158542502016545090413245809786882778948721859617");
numberList.Add("72107838435069186155435662884062257473692284509516");
numberList.Add("20849603980134001723930671666823555245252804609722");
numberList.Add("53503534226472524250874054075591789781264330331690");
return numberList;
}
}
Longest Collatz sequence
Longest Collatz sequence
The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
namespace EulerProjects
{
public class LongestCollatzSequence : iEulerProjects
{
Dictionary<long, int> CollatzLengths = new Dictionary<long, int>();
public string RunSolution()
{
return CycleBelowOneMillion().ToString();
}
private int CycleBelowOneMillion()
{
const int oneMillion = 1000000;
var valueOfLongestSequence = 0;
var countOfLongestSequence = 0;
for (int count = 2; count < oneMillion; count++)
{
var lengthOfSequence = CalculateSequence(count);
if (lengthOfSequence > countOfLongestSequence)
{
valueOfLongestSequence = count;
countOfLongestSequence = lengthOfSequence;
}
}
return valueOfLongestSequence;
}
private int CalculateSequence(int startingNumber)
{
List<long> sequence = new List<long>();
sequence.Add(startingNumber);
long currentNumber = startingNumber;
while (currentNumber != 1)
{
currentNumber = currentNumber % 2 == 0 ? processEvenValue(currentNumber) : processOddValue(currentNumber);
if (CollatzLengths.ContainsKey(currentNumber))
{
var totalLength = sequence.Count + CollatzLengths[currentNumber];
CollatzLengths.Add(startingNumber, totalLength);
return totalLength;
}
sequence.Add(currentNumber);
};
CollatzLengths.Add(startingNumber, sequence.Count);
return sequence.Count;
}
private long processEvenValue(long sourceNumber)
{
return sourceNumber / 2;
}
private long processOddValue(long sourceNumber)
{
return (3 * sourceNumber) + 1;
}
}
Lattice paths
Lattice paths
Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.
How many such routes are there through a 20×20 grid?
namespace EulerProjects
{
public class LatticePaths : iEulerProjects
{
public string RunSolution()
{
int row = 20;
return ProcessLattice(row).ToString();
}
private double ProcessLattice(double Dimention)
{
List<double> FactorialRow = new List<double>();
//initializes with second row at (1, 1)
FactorialRow.Add(1);
FactorialRow.Add(1);
//(Demention * 2) + 1 to find the Nth odd numbered row as the desired row
for (int count = 3; count < (Dimention * 2) + 2; count++)
{
FactorialRow = PascalRow(FactorialRow);
}
return FactorialRow.Max();
}
private List<double> PascalRow(List<double> previousRow)
{
List<double> CurrentRow = new List<double>();
CurrentRow.Add(1);
//Only need to the second to last value
for (int count = 0; count < previousRow.Count() - 1; count++)
{
CurrentRow.Add(previousRow[count] + previousRow[count + 1]);
}
CurrentRow.Add(1);
return CurrentRow;
}
}
Power digit sum
Power digit sum
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 21000?
namespace EulerProjects
{
public class LatticePaths : iEulerProjects
{
public string RunSolution()
{
int row = 20;
return ProcessLattice(row).ToString();
}
private double ProcessLattice(double Dimention)
{
List<double> FactorialRow = new List<double>();
//initializes with second row at (1, 1)
FactorialRow.Add(1);
FactorialRow.Add(1);
//(Demention * 2) + 1 to find the Nth odd numbered row as the desired row
for (int count = 3; count < (Dimention * 2) + 2; count++)
{
FactorialRow = PascalRow(FactorialRow);
}
return FactorialRow.Max();
}
private List<double> PascalRow(List<double> previousRow)
{
List<double> CurrentRow = new List<double>();
CurrentRow.Add(1);
//Only need to the second to last value
for (int count = 0; count < previousRow.Count() - 1; count++)
{
CurrentRow.Add(previousRow[count] + previousRow[count + 1]);
}
CurrentRow.Add(1);
return CurrentRow;
}
}
Number letter counts
Number letter counts
If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.
If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.
namespace EulerProjects
{
public class NumberLetterCounts : iEulerProjects
{
public string RunSolution()
{
return NumberLetterCountsController(1000).ToString();
}
public string RunSolution(string number)
{
int.TryParse(number, out int testNumber);
Console.WriteLine(string.Format("The character count of the number {0} is {1}", testNumber, ProcessDigits(PlacedNumbers(testNumber))));
return NumberLetterCountsController(testNumber).ToString();
}
private int NumberLetterCountsController(int numbers)
{
int totalcharacters = 0;
for (int count = 1; count <= numbers; count++)
{
totalcharacters += ProcessDigits(PlacedNumbers(count));
}
return totalcharacters;
}
private int ProcessDigits(List<int> numbers)
{
int CharacterCount = 0;
CharacterCount += OnesPlace(numbers[0]);
if (numbers.Count() > 1)
{
if (numbers[1] != 1)
{
CharacterCount += TensPlace(numbers[1]);
}
else
{
CharacterCount = TeensPlace(numbers[0]);
}
if (numbers.Count() > 2)
{
CharacterCount += HundredsPlace(numbers[2], numbers[0] > 0 || numbers[1] > 0);
if (numbers.Count() > 3)
{
CharacterCount += ThousandsPlace(numbers[3]);
if (numbers.Count() > 4)
{
return 0;
}
}
}
}
return CharacterCount;
}
private List<int> PlacedNumbers(int number)
{
List<int> Digits = new List<int>();
do
{
int placeholder = number % 10;
Digits.Add(placeholder);
number -= placeholder;
number = number / 10;
}
while (number > 0);
return Digits;
}
private int OnesPlace(int number)
{
switch (number)
{
case 1:
return ("one").Count();
case 2:
return ("two").Count();
case 3:
return ("three").Count();
case 4:
return ("four").Count();
case 5:
return ("five").Count();
case 6:
return ("six").Count();
case 7:
return ("seven").Count();
case 8:
return ("eight").Count();
case 9:
return ("nine").Count();
default:
return 0;
}
}
/// <summary>
/// Returns the number of characters for spelled out numbers from 11 - 19
/// </summary>
/// <param name="number">Provide the number in the Ones Place</param>
/// <returns></returns>
private int TeensPlace(int number)
{
switch (number)
{
case 0:
return ("ten").Count();
case 1:
return ("eleven").Count();
case 2:
return ("twelve").Count();
case 3:
return ("thirteen").Count();
case 4:
return ("fourteen").Count();
case 5:
return ("fifteen").Count();
case 6:
return ("sixteen").Count();
case 7:
return ("seventeen").Count();
case 8:
return ("eighteen").Count();
case 9:
return ("nineteen").Count();
default:
return 0;
}
}
private int TensPlace(int number)
{
switch (number)
{
case 2:
return ("twenty").Count();
case 3:
return ("thirty").Count();
case 4:
return ("forty").Count();
case 5:
return ("fifty").Count();
case 6:
return ("sixty").Count();
case 7:
return ("seventy").Count();
case 8:
return ("eighty").Count();
case 9:
return ("ninety").Count();
default:
return 0;
}
}
private int HundredsPlace(int number, bool includeAnd = false)
{
int AndCount = includeAnd ? ("and").Count() : 0;
return number != 0 ? OnesPlace(number) + ("hundred").Count() + AndCount : 0 + AndCount;
}
private int ThousandsPlace(int number)
{
return OnesPlace(number) + ("thousand").Count();
}
}
}
Maximum path sum I
Maximum path sum I
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
namespace EulerProjects
{
public class LatticePaths : iEulerProjects
{
public string RunSolution()
{
int row = 20;
return ProcessLattice(row).ToString();
}
private double ProcessLattice(double Dimention)
{
List<double> FactorialRow = new List<double>();
//initializes with second row at (1, 1)
FactorialRow.Add(1);
FactorialRow.Add(1);
//(Demention * 2) + 1 to find the Nth odd numbered row as the desired row
for (int count = 3; count < (Dimention * 2) + 2; count++)
{
FactorialRow = PascalRow(FactorialRow);
}
return FactorialRow.Max();
}
private List<double> PascalRow(List<double> previousRow)
{
List<double> CurrentRow = new List<double>();
CurrentRow.Add(1);
//Only need to the second to last value
for (int count = 0; count < previousRow.Count() - 1; count++)
{
CurrentRow.Add(previousRow[count] + previousRow[count + 1]);
}
CurrentRow.Add(1);
return CurrentRow;
}
}
Counting Sundays
Counting Sundays
You are given the following information, but you may prefer to do some research for yourself.
- 1 Jan 1900 was a Monday.
- Thirty days has September, April, June and November.
- All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine.
- A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.
How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?
namespace EulerProjects
{
public class CountingSundays : iEulerProjects
{
public enum MonthName { January, February, March, April, May, June, July, August, September, October, November, December }
public enum DayName { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday }
public Dictionary<MonthName, int> DayCount = new Dictionary<MonthName, int>
{
{MonthName.January, 31 }
,{MonthName.February, 28}
,{MonthName.March, 31}
,{MonthName.April, 30}
,{MonthName.May, 31}
,{MonthName.June, 30}
,{MonthName.July, 31}
,{MonthName.August, 31}
,{MonthName.September, 30}
,{MonthName.October, 31}
,{MonthName.November, 30}
,{MonthName.December, 31}
};
private int TotalFirsts = 0;
public string RunSolution()
{
CountSundays();
return TotalFirsts.ToString();
}
public string RunSolution(string TestInput)
{
return RunSolution();
}
private void CountSundays()
{
DayName FirstDayOfTheYear = DayName.Monday;
for (int Year = 1900; Year <= 2000; Year++)
{
if (Year == 1901) { TotalFirsts = 0; }
if (TestYear(Year))
{
DayCount[MonthName.February] = 29;
FirstDayOfTheYear = YearOfFirsts(FirstDayOfTheYear);
DayCount[MonthName.February] = 28;
continue;
}
FirstDayOfTheYear = YearOfFirsts(FirstDayOfTheYear);
}
}
private bool TestYear(int year)
{
if (year % 4 == 0)
{
if (year % 400 == 0) { return true; }
if (year % 100 == 0) { return false; }
return true;
}
return false;
}
private DayName YearOfFirsts(DayName firstDayOfTheYear)
{
DayName FirstDay = firstDayOfTheYear;
//Cycle months
for (MonthName Month = MonthName.January; Month <= MonthName.December; Month++)
{
int Date = 0;
do
{
//Cycle Weeks
for (DayName Day = FirstDay; Day <= DayName.Sunday; Day++)
{
Date++;
if (Date > DayCount[Month])
{
FirstDay = Day;
break;
}
}
if (Date > DayCount[Month])
{
continue;
}
FirstDay = DayName.Monday;
} while (Date <= DayCount[Month]);
//Increment sunday the first
if (FirstDay == DayName.Sunday)
{
TotalFirsts++;
}
}
return FirstDay;
}
}
}
Factorial digit sum
Factorial digit sum
n! means n × (n − 1) × ... × 3 × 2 × 1
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
Find the sum of the digits in the number 100!
namespace EulerProjects
{
class FactorialDigitSum : iEulerProjects
{
enum DigitPosition { Ones, Tens, Hundreds, Thousands }
public string RunSolution()
{
return IterateFactors(100).ToString();
}
public string RunSolution(string TestInput)
{
try
{
int input = int.Parse(TestInput);
return IterateFactors(input).ToString();
}
catch (Exception e)
{
return e.Message;
}
}
private int NextDigit(int digits) { return (digits - (digits % 10)) / 10; }
private int IterateFactors(int MaxFactor)
{
List<int> Factorial = new List<int> { 2 }; //No need to multiply by 1
for (int factor = 3; factor <= MaxFactor; factor++)
{
Factorial = NextFactorial(Factorial, factor);
RemoveTrailingZeros(ref Factorial);
}
PrintFactorial(Factorial);
return SumFactorialDigits(Factorial);
}
private void PrintFactorial(List<int> factorial)
{
factorial.Reverse();
Console.WriteLine(string.Empty);
foreach (int digit in factorial)
{
Console.Write(digit.ToString());
}
Console.WriteLine(string.Empty);
}
private void RemoveTrailingZeros(ref List<int> factorial)
{
int PositionZero = 0;
while (factorial[PositionZero] == 0)
{
List<int> MinusTrailingZero = new List<int>();
for (int digit = 1; digit < factorial.Count(); digit++)
{
MinusTrailingZero.Add(factorial[digit]);
}
factorial = MinusTrailingZero;
}
}
private int SumFactorialDigits(List<int> factorial)
{
int FinalSum = 0;
foreach (int digit in factorial)
{
FinalSum += digit;
}
return FinalSum;
}
private List<int> NextFactorial(List<int> factorial, int factor)
{
if (factor < 10)
{
return MultiplyFactorial(factorial, factor, (int)DigitPosition.Ones);
}
List<int> NewFactorial = new List<int>();
if (factor < 100)
{
List<List<int>> Factors = new List<List<int>>();
Factors.Add(MultiplyFactorial(factorial, factor % 10, (int)DigitPosition.Ones));
Factors.Add(MultiplyFactorial(factorial, NextDigit(factor) % 10, (int)DigitPosition.Tens));
Factors = EqualizeFactorLength(Factors);
return SumFactors(Factors);
}
else
{
List<List<int>> Factors = new List<List<int>>();
List<int> FactorialDigits = GetDigits(factor);
int CurrentDigitPosition = 0;
foreach (int FactorialDigit in FactorialDigits)
{
Factors.Add(MultiplyFactorial(factorial, FactorialDigit, CurrentDigitPosition));
CurrentDigitPosition++;
}
Factors = EqualizeFactorLength(Factors);
return SumFactors(Factors);
}
}
private List<int> GetDigits(int factor)
{
List<int> digits = new List<int>();
int CurrentFactor = factor;
while (CurrentFactor > 0)
{
digits.Add(CurrentFactor % 10);
CurrentFactor = NextDigit(CurrentFactor);
}
return digits;
}
private List<int> SumFactors(List<List<int>> factors)
{
List<int> Sum = factors[0];
bool CarryOver = false;
for (int factor = 1; factor < factors.Count; factor++)
{
for (int digit = 0; digit < factors[factor].Count; digit++)
{
int NewDigit = Sum[digit] + factors[factor][digit] + (CarryOver ? 1 : 0);
if (NewDigit < 10)
{
Sum[digit] = NewDigit;
CarryOver = false;
continue;
}
Sum[digit] = NewDigit % 10;
CarryOver = true;
}
if (CarryOver)
{
Sum.Add(1);
}
}
return Sum;
}
private List<List<int>> EqualizeFactorLength(List<List<int>> factors)
{
int MaxLegnth = 0;
foreach (List<int> Factor in factors)
{
if (Factor.Count > MaxLegnth)
{
MaxLegnth = Factor.Count();
}
}
List<List<int>> EqualizedFactorLengths = new List<List<int>>();
foreach(List<int> Factor in factors)
{
for (int digit = Factor.Count; digit < MaxLegnth; digit++)
{
Factor.Add(0);
}
EqualizedFactorLengths.Add(Factor);
}
return EqualizedFactorLengths;
}
private List<int> convertCarryOver(int carryOver)
{
List<int> NewCarryOver = new List<int>();
while (carryOver > 0)
{
NewCarryOver.Add(carryOver % 10);
carryOver = NextDigit(carryOver);
}
return NewCarryOver;
}
private List<int> MultiplyFactorial(List<int> factorial, int factor, int valuePosition)
{
int CarryOver = 0;
List<int> newFactorial = valuePosition == 0 ? new List<int>() : FillerPosition(valuePosition);
for (int position = 0; position < factorial.Count(); position++)
{
int testValue = (factorial[position] * factor) + CarryOver;
if (testValue < 10)
{
newFactorial.Add(testValue);
CarryOver = 0;
continue;
}
newFactorial.Add(testValue % 10);
CarryOver = NextDigit(testValue);
}
while (CarryOver > 0)
{
newFactorial.Add(CarryOver % 10);
CarryOver = NextDigit(CarryOver);
}
return newFactorial;
}
private List<int> FillerPosition(int valuePosition)
{
List<int> Filler = new List<int>();
for (int count = 0; count < valuePosition; count++)
{
Filler.Add(0);
}
return Filler;
}
}
}
Projects 21 - 30 (in progress)
Amicable numbers
Amicable numbers
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
namespace EulerProjects
{
public class AmicableNumbers : iEulerProjects
{
public string RunSolution()
{
return AmicableNumbersController(10000);
}
public string RunSolution(string TestInput)
{
try
{
int Input = int.Parse(TestInput);
return AmicableNumbersController(Input);
}
catch (Exception e)
{
return e.Message;
}
}
private string AmicableNumbersController(int input)
{
List<int> PrimeNumbers = GetPrimeNumbers(input);
Dictionary<int, List<int>> AmicableCandidates = GetAmicableCandidates(input, PrimeNumbers);
Dictionary<int, int> AmicableNumbers = GetAmicableNumbers(AmicableCandidates);
int AmicableNumberSum = SumAmicableNumbers(AmicableNumbers);
return AmicableNumberSum.ToString();
}
private List<string> BuildFileString(Dictionary<int, List<int>> amicableCandidates)
{
List<string> AllRecords = new List<string>();
foreach (int key in amicableCandidates.Keys.ToList())
{
string FileText = key.ToString();
foreach (int value in amicableCandidates[key])
{
FileText += string.Format(", {0}", value);
}
AllRecords.Add(FileText);
}
return AllRecords;
}
private List<string> BuildFileString(Dictionary<int, int> amicableCAndidates)
{
List<string> AllRecords = new List<string>();
foreach (int key in amicableCAndidates.Keys.ToList())
{
AllRecords.Add(string.Format("{0}, {1}"));
}
return AllRecords;
}
private int SumAmicableNumbers(Dictionary<int, int> amicableNumbers)
{
List<int> Keys = amicableNumbers.Keys.ToList();
int sum = 0;
foreach (int Key in Keys)
{
sum += amicableNumbers[Key];
}
return sum;
}
private Dictionary<int, int> GetAmicableNumbers(Dictionary<int, List<int>> amicableCandidates)
{
List<int> CandidateKeys = amicableCandidates.Keys.ToList();
Dictionary<int, int> AmacableNumbers = new Dictionary<int, int>();
foreach(int key in CandidateKeys)
{
foreach(int value in amicableCandidates[key])
{
if (amicableCandidates.ContainsKey(value) && amicableCandidates[value].Contains(key))
{
if (key == value)
{
continue;
}
AmacableNumbers.Add(key, value);
}
}
}
return AmacableNumbers;
}
private Dictionary<int, List<int>> GetAmicableCandidates(int maxCandidate, List<int> primeNumbers)
{
Dictionary<int, List<int>> AmicableCandidates = new Dictionary<int, List<int>>();
for (int Candidate = 2; Candidate <= maxCandidate; Candidate++)
{
if (primeNumbers.Contains(Candidate))
{
continue;
}
int DivisorsSum = GetDivisorsSum(Candidate);
if (AmicableCandidates.ContainsKey(DivisorsSum))
{
AmicableCandidates[DivisorsSum].Add(Candidate);
continue;
}
AmicableCandidates.Add(DivisorsSum, new List<int>() { Candidate });
}
return AmicableCandidates;
}
private int GetDivisorsSum(int cantidate)
{
List<int> Divisors = FindDivisors(cantidate);
return Divisors.Sum();
}
#region Divisors
private List<int> FindDivisors(int of)
{
List<int> DivisorList = new List<int>();
DivisorList.Add(1);
for (int cantidate = 2; cantidate <= Math.Sqrt(of); cantidate++)
{
if (of % cantidate == 0)
{
DivisorList.Add(cantidate);
DivisorList.Add(of / cantidate);
}
}
return DivisorList;
}
#endregion
#region Prime Numbers
private List<int> GetPrimeNumbers(int maxPrime)
{
List<int> PrimeNumbers = new List<int>() { 2 };
for (int Candidate = 3; Candidate <= maxPrime; Candidate += 2)
{
if (IsPrimeNumber(Candidate, PrimeNumbers))
{
PrimeNumbers.Add(Candidate);
}
}
return PrimeNumbers;
}
private bool IsPrimeNumber(int cantidate, List<int> primeNumbers)
{
for (int position = 0; position < primeNumbers.Count(); position++)
{
if (primeNumbers[position] > Math.Sqrt(cantidate))
{
return true;
}
if (cantidate % primeNumbers[position] == 0)
{
return false;
}
}
return true;
}
#endregion
}
}
Names scores
Names scores
Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score.
For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 × 53 = 49714.
What is the total of all the name scores in the file?
namespace EulerProjects
{
public class NamesScores : iEulerProjects
{
public string RunSolution()
{
return NamesScoresController();
}
public string RunSolution(string TestInput)
{
return "This solution requires the provided file, and does not accept user input";
}
private string NamesScoresController()
{
List<string> Names = BuildNamesList();
Dictionary<string, int> NameScore = GenerateScores(Names);
int Scores = SumScores(NameScore);
return Scores.ToString();
}
private int SumScores(Dictionary<string, int> nameScore)
{
List<string> Keys = nameScore.Keys.ToList();
int Total = 0;
foreach(string key in Keys)
{
Total += nameScore[key];
}
return Total;
}
private Dictionary<string, int> GenerateScores(List<string> names)
{
Dictionary<string, int> TravelDictionary = new Dictionary<string, int>();
for (int count = 0; count < names.Count; count++)
{
int ListPosition = count + 1;
int NameValue = GetNameValue(names[count]);
if (!TravelDictionary.ContainsKey(names[count]))
{
TravelDictionary.Add(names[count], NameValue * ListPosition);
}
}
return TravelDictionary;
}
private int GetNameValue(string name)
{
int Value = 0;
foreach (char character in name)
{
Value += GetCharacterValue(character);
}
return Value;
}
private int GetCharacterValue(char character)
{
int AsciiCharactersBefore = 96; //lowercase a is number 97
return char.ToLower(character) - AsciiCharactersBefore;
}
private List<string> BuildNamesList()
{
string FileName = @"\p022_names.txt";
string BuildPath = @"\Projects\1-50\Project0022-NamesScores";
string[] UnSeparatedNames = File.ReadAllLines(string.Concat(Directory.GetCurrentDirectory(), BuildPath, FileName));
if (UnSeparatedNames.Length > 1)
{ return new List<string>() { "Bad List" }; }
List<string> Names = UnSeparatedNames[0].Split(',').ToList();
Names = RemoveEscapedQuotes(Names);
Names.Sort();
return Names ;
}
private List<string> RemoveEscapedQuotes(List<string> names)
{
List<string> NoEscapteQuotes = new List<string>();
foreach(string name in names)
{
int first = name.IndexOf('\"');
int last = name.IndexOf('\"', first + 1);
string tName = name.Remove(last, 1);
tName = tName.Remove(first, 1);
NoEscapteQuotes.Add(tName);
}
return NoEscapteQuotes;
}
}
}